Tutorial 4 : Program Verification

CS60030 Formal Systems

PALLAB DASGUPTA,

FNAE, FASc,

A K Singh Distinguished Professor in Al, Dept of Computer Science \& Engineering Indian Institute of Technology Kharagpur
Email: pallab@cse.iftkgp.ac.in
Web: http:/lcse.iftkgp.ac.in/~pallab

Weakest Pre-condition

Starting with the postcondition and statements, fill in the intermediate assertions and weakest precondition:

$$
\begin{array}{llll}
x=2 * x ; & x=y-2 ; & w=2 * w ; & y=2 * x ; \\
z=x+1 ; & z=x+y ; & z=v-2 ; & y=y+2 ; \\
\{z!=0\} & \{z>0\} & y=-w ; & z=y / 2 ; \\
& & x=\min (y, z) ; & \{z>x\} \\
& & \{x<0\} &
\end{array}
$$

Compute $\operatorname{wp}(A, x<y)$ in as simple form as you can, where A is the following code fragment

$$
\begin{aligned}
& \text { if }(x>y) \\
& \operatorname{tmp}=x ; \\
& x=y ; \\
& y=\operatorname{tmp} ;
\end{aligned}
$$

Program Abstraction

Check if the following code computes the maximum of two no.s for any given set of input

$$
\begin{aligned}
& \{\text { true }\} \\
& \text { if }(x>y): r=x ; \\
& \text { else }: r=y ;
\end{aligned}
$$

Analyze the program using the domain Parity and then Sign.

$$
\begin{aligned}
& y=5 ; \\
& x=-2 * y ; \\
& \text { if }(x>0)\{ \\
& x=x-(y \% 2-1) ; \\
& y=x *(y-1) ; \\
& \text { else } \\
& y=-1 ;
\end{aligned}
$$

Program Verification

L1: $\quad \mathrm{a}=\mathrm{b}=\mathrm{i}=0$;
L2: while $(a<=10)$ \{
L3: $\quad a=b+i ;$
L4: $\quad b=a+1$;
L5: $\quad i=i+1$;
L6: \}
L7: if $(b>20)\{$
L8: error: exit(-1);
L9: \}

1. Construct a Boolean program corresponding to this program P, using only the predicates ($a \leq 10$), ($b \geq 0$), ($\mathrm{i}=0$), and ($\mathrm{b} \leq 20$)
2. Show that the error location is reachable in the Boolean program you constructed
3. Explain whether the error identified in this Boolean program is a spurious counter-example.

Program Verification

Use abstract interpretation on the following program to determine whether the assertion is true. Use the sign domain as your abstract domain, which has only three elements, [+, -, 0], representing +ve, -ve, and zero respectively. Show the values collected in each location. Also indicate the outcome:

```
L1: x = 1;
L2: if (y<= 10){
L3: y = 10;
    }
L3 :else{
L5: while (x < y){
L6: }\quad\textrm{x}=2\mathrm{ * x;
L7: y=y-1;
    }
    }
L8: }\quadx=y+1
L9: assert (x>0);
```

